Mediterr J Rheumatol 2018;29(2):67-79
The Involvement of MicroRNAs in Osteoarthritis and Recent Developments: A Narrative Review
Authors Information
1: Postgraduate Program “Metabolic Bone Diseases”, National and Kapodistrian University of Athens, Medical School
2: First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
Background: Osteoarthritis (OA) is the most common chronic joint disease and it may progressively cause disability and compromise quality of life. Lately, the role of miRNAs in the pathogenesis of OA has drawn a lot of attention. miRNAs are small, single-stranded, non-coding molecules of RNA which regulate gene expression at post-transcriptional level. The dysregulation of the expression of several miRNAs affects pathways involved in OA pathogenesis. Objective: The purpose of this article is to review the literature on the involvement of miRNAs in the pathogenesis of OA and the implications on its diagnosis and treatment. Materials and Methods: An extensive electronic literature search was conducted by two researchers from January 2008 to August 2017. Titles and abstracts of papers were screened by the authors for further inclusion in the present work. Finally, full texts of the selected articles were retrieved. Results: Abnormally expressed miRNAs enhance the production of cartilage degrading enzymes, inhibit the expression of cartilage matrix components, increase the production of proinflammatory cytokines, facilitate chondrocyte apoptosis, suppress autophagy in chondrocytes and are involved in pain-related pathways. miRNAs are also incorporated in extracellular membranous vesicles such as exosomes and participate in the intercellular communication in osteoarthritic joints. Conclusion: Ongoing research on miRNAs has potential implications in the diagnosis and treatment of OA. Their different levels in peripheral blood and synovial fluid between OA patients and healthy population makes them candidates for being used as biomarkers of the disease, while targeting miRNAs may be a novel therapeutic strategy in OA.